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ADDENDUM 

Icosians versus octonions as descriptions of the E, lattice 

Mehmet Kocat 
Institut des Hautes Etudes Scientifiques, 91440 Bures-Sur-Yvette, France 

Received 9 January 1989 

Abstract. A simple method for the construction of the Es root system with icosians is 
suggested. It is confronted with the root system of E, obtained by integral octonions. 

Symmetries of the root lattice of E8 and its sublattices play important roles in the 
compactification [l] of the heterotic string [2]. It is therefore desirable to investigate 
its properties by all relevant mathematical means. In a companion work [3] we have 
constructed the E8 lattice with integral octonions [4] and displayed its branching with 
respect to its maximal subalgebras. 

In this addendum to [3] we construct the root system of E8 with icosians [5] using 
a similar method as in [3] and determine the relations between these two types of 
construction. The icosian is the generic name for the set of 120 elements of the binary 
icosahedral group, a double cover of the icosahedral group (isomorphic to the group 
AS of even permutations of five letters), consisting of the quaternions [5]: 

*l ,  * e , ,  * e 2 ,  *e3  ;(*I * e ,  * e,* e3)  ( l a )  
f( * T  e, * ae2) f ( * ~  * we, i e3)  

+(*I *we2* 7e3)  $(*I * w1 * we3) 

; ( * u * ~ e ~ * e ~ )  $(*U* e, * 7e3) f ( * ~ * ~ e , * e , )  

f( f a e l  e2 * 7e3)  

where T and U are defined by 

f( * T * e, * (+e3) 

$(*I * r e ,  * T e 2 )  
(1b) 

f ( * T e ,  * ~ e , *  e3)  ;(*e, * 7e2* ae3) 

T = f( 1 + 5 )  ~ = f ( l - 5 )  

and e , ,  e, and e3 are the quaternionic imaginary units satisfying 
- 

(3) e'e. [ J  = -6,j + &i jkek ( i , j ,  k = l , 2 , 3 )  e =--e.  

where 6, and &,jk are the usual Kronecker and Levi-Civita symbols respectively. 24 
of the integral quaternions in ( l a )  (Hurwitz integers) [6] form the binary tetrahedral 
group and represent the root system of SO(8).  120 of the elements in ( l a )  and (1 b) 
can be generated by two elements A = $( T - we, + e3)  and B = f( 1 - we2 + 7e3)  satisfying 
the relations 

(4) A s =  B 3 =  C2= ABC = -1 

t On leave of absence from Physics Department, Cukurova University, Adana, Turkey. 

0305-4470/89/111949 +O4$02.50 @ 1989 IOP Publishing Ltd 1949 



1950 M Koca 

with C = e3.  Let p and q be two quaternions. We define the scalar product by the 
relation 

(P, q ) = t ( P q + q P ) .  ( 5 )  

With this definition, the scalar product of icosians in (1 a )  and (1 b) will take the values 
a + b a  where a and b are 0, i;, i l .  Wilson and Conway in [ 5 ]  define a ‘reduced’ 
scalar product by the mapping a + ba -P a. With this new definition of the scalar product 
they show that the set of icosians q and aq form the root system of E8. Moroever, 
with the same definition of ‘reduced’ scalar product they construct the Leech lattice 
[7] with icosians. 

Following [3] we denote the roots and three eight-dimensional representations of 
SO(8) by the sets of integral and half integral quaternions 

A0 AI A2 A3 

$(*I * e, i e2 i e3) ;(*e2*e3) f ( * e 3 * e l )  $(*e, i e*).  
24:*1,*e,, * e 2 , * e 3  8,,:$(*1*el) &:$(*l*e2) 8s:4(*l*e3) (6) 

These are the 48 roots of F4. Here A , ,  A2 and A, denote the short roots, A, represents 
the long roots of F,. In [8] it has been shown that by ‘matching’ two system of F4 
roots one can construct the E8 lattice. This method is used in [3] to express the E8 
lattice in terms of octonions. Here we use the same trick. To obtain 240 roots of E8 
we multiply the F4 roots in ( 6 )  by a and add them to the roots in (6) provided the 
so-obtained icosians have the ‘reduced’ norm of unity. In fact the following set of 
icosians 

not only reproduces the 120 elements in ( l a )  and ( lb) ,  denoted by q, but also yields 
the additional 120 roots aq of Eg. It is clear from the definition of ‘reduced’ scalar 
product that the quaternionic units 1 ,  e , ,  e 2 ,  e3 and a, ue,  , ae2 ,  ae3 form an orthogonal 
set of eight elements. A Coxeter-Dynkin diagram leading to the E8 roots in (7 )  are 
given in figure 1. In [3] we have given the octonionic roots of E8 with the notation 

[A,, 01 = A, [0, A,] = e7A, [ A , ,  A,]  = A ,  + e,A, 
(8) 

[A2 9 A31 = A2 + e7A3 [Aj , AI] A3 + e7A2. 

Figure 1. Coexter-Dynkin diagram of E, with icosians. 
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A comparison of (7 )  and (8) suggests that a mapping between the octonionic roots 
and the icosians can be obtained in the following form: 

u A 2 t )  e,A, ut, e7 

u A , t , e 7 A 2  -+ ue3*e6= e7e3 

uA,  t, e7A3 ue, t) e5 = e7e2 (9) 

ue2- e4 = e7e1. 

With the obvious mapping 1 t, 1, e,  t) e , ,  e,- e2 ,  e ,@ e3 one can easily transform one 
construction to the other. The correspondence in (9) will also lead to the octonionic 
construction of the Leech lattice described by Wilson in ( 5 ) .  In appendix 1 of [3] we 
have shown that two more independent octonionic root systems of Es can be obtained 
by successive applications of the replacement A ,  + A2 -+ A3 + A ,  in (8). These changes 
will certainly alter the mappings in (9) accordingly. 

The algebraic structures of the root systems of Es with octonions and icosians can 
be confronted as follows. 

(i)  The octonionic root system obeys the usual scalar product defined by ( 5 )  and 
forms a closed non-associative algebra of 240 elements, only 24 of which form a group 
called the binary tetrahedral group. 

(ii) 120 elements of icosians in (7) form the binary icosahedral group extending 
the order of the group structure in the case of octonions, but the whole set of 240 
icosians do not close under multiplication since (uq)(uq’) = q + uq’ produces the lattice 
vectors of higher norm. 

(iii) As we have shown in [9] octonionic roots of Es yield natural Abelian sym- 
metries z6, Z4, Z, and Z2 of the Es lattice and an interesting manifestation of the 
triality of the extended Coxeter-Dynkin diagram of E6. 

With icosianic roots, while preserving the triality structure of the extended Coxeter- 
Dynkin diagram of E6 one can naturally have the Abelian symmetries Zl0,  Z6, Z5, Z4, 
Z3,  Z2 of the root system of E8.  To be more specific the maximal subgroup SU(5) x 
SU(5) of Es can be embedded in E8 with a Z5 symmetry invariance a case, which is 
not possible in the octonionic representation of Es lattice. 

Another amusing observation is the possibility of describing the E8 x El, root system 
by a simple extension of the root system in (7).  Indeed, if we multiply the icosians in 
( 7 )  by e7 we obtain a root system of 240 elements described by the octonionic units 
e4 ,  e 5 ,  e6,  el and ue4, ue5 ,  (+e6 and (+e7. This second set of 240 octonionic elements 
can be used to describe the root lattice of an independent El,. Its algebraic structure 
is also interesting. The product of any two roots from El, will give a root or a vector 
of higher norm in E8.  A more important aspect is that the roots of El, are non-associative 
under multiplication. This feature of El, could be attributed to the reason why El, is 
not broken in the heterotic string [2] by compactification. The reason could be algebraic 
rather than dynamical. 

Details of this work, emphasising more on the Z5 symmetry of the icosians will be 
published elsewhere [ 101. 
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