Icosians versus octonions as descriptions of the E_{8} lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 221949
(http://iopscience.iop.org/0305-4470/22/11/033)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:43

Please note that terms and conditions apply.

ADDENDUM

Icosians versus octonions as descriptions of the $\mathbf{E}_{\mathbf{8}}$ lattice

Mehmet Koca \dagger
Institut des Hautes Etudes Scientifiques, 91440 Bures-Sur-Yvette, France

Received 9 January 1989

Abstract

A simple method for the construction of the E_{8} root system with icosians is suggested. It is confronted with the root system of E_{8} obtained by integral octonions.

Symmetries of the root lattice of E_{8} and its sublattices play important roles in the compactification [1] of the heterotic string [2]. It is therefore desirable to investigate its properties by all relevant mathematical means. In a companion work [3] we have constructed the E_{8} lattice with integral octonions [4] and displayed its branching with respect to its maximal subalgebras.

In this addendum to [3] we construct the root system of E_{8} with icosians [5] using a similar method as in [3] and determine the relations between these two types of construction. The icosian is the generic name for the set of 120 elements of the binary icosahedral group, a double cover of the icosahedral group (isomorphic to the group A_{5} of even permutations of five letters), consisting of the quaternions [5]:

$$
\begin{array}{lll}
\pm 1, \pm e_{1}, \pm e_{2}, \pm e_{3} & \frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right) & \\
\frac{1}{2}\left(\pm \tau \not e_{1} \pm \sigma e_{2}\right) & \frac{1}{2}\left(\pm \tau \pm e_{2} \pm \sigma e_{3}\right) & \frac{1}{2}\left(\pm \tau \pm \sigma e_{1} \pm e_{3}\right) \\
\frac{1}{2}\left(\pm 1 \pm \tau e_{1} \pm \sigma e_{3}\right) & \frac{1}{2}\left(\pm 1 \pm \sigma e_{1} \pm \tau e_{2}\right) & \frac{1}{2}\left(\pm 1 \pm \sigma e_{2} \pm \tau e_{3}\right) \\
\frac{1}{2}\left(\pm \sigma \pm \tau e_{2} \pm e_{3}\right) & \frac{1}{2}\left(\pm \sigma \pm e_{1} \pm \tau e_{3}\right) & \frac{1}{2}\left(\pm \sigma \pm \tau e_{1} \pm e_{2}\right) \tag{1b}\\
\frac{1}{2}\left(\pm \sigma e_{1} e_{2} \pm \tau e_{3}\right) & \frac{1}{2}\left(\pm \tau e_{1} \pm \sigma e_{2} \pm e_{3}\right) & \frac{1}{2}\left(\pm e_{1} \pm \tau e_{2} \pm \sigma e_{3}\right)
\end{array}
$$

where τ and σ are defined by

$$
\begin{array}{llll}
\tau=\frac{1}{2}(1+5) & \sigma=\frac{1}{2}(1-5) & & \\
\tau+\sigma=1 & \tau^{2}=\tau+1 & \sigma^{2}=\sigma+1 & \tau \sigma=-1 \tag{2}
\end{array}
$$

and e_{1}, e_{2} and e_{3} are the quaternionic imaginary units satisfying

$$
\begin{equation*}
e_{i} e_{j}=-\delta_{i j}+\varepsilon_{i j k} e_{k} \quad(i, j, k=1,2,3) \quad \bar{e}_{i}=-e_{i} \tag{3}
\end{equation*}
$$

where $\delta_{i j}$ and $\varepsilon_{i j k}$ are the usual Kronecker and Levi-Civita symbols respectively. 24 of the integral quaternions in (1a) (Hurwitz integers) [6] form the binary tetrahedral group and represent the root system of $\mathrm{SO}(8) .120$ of the elements in ($1 a$) and ($1 b$) can be generated by two elements $A=\frac{1}{2}\left(\tau-\sigma e_{1}+e_{3}\right)$ and $B=\frac{1}{2}\left(1-\sigma e_{2}+\tau e_{3}\right)$ satisfying the relations

$$
\begin{equation*}
A^{5}=B^{3}=C^{2}=A B C=-1 \tag{4}
\end{equation*}
$$

\dagger On leave of absence from Physics Department, Cukurova University, Adana, Turkey.
with $C=e_{3}$. Let p and q be two quaternions. We define the scalar product by the relation

$$
\begin{equation*}
(p, q)=\frac{1}{2}(\bar{p} q+\bar{q} p) . \tag{5}
\end{equation*}
$$

With this definition, the scalar product of icosians in (1a) and (1b) will take the values $a+b \sigma$ where a and b are $0, \pm \frac{1}{2}, \pm 1$. Wilson and Conway in [5] define a 'reduced' scalar product by the mapping $a+b \sigma \rightarrow a$. With this new definition of the scalar product they show that the set of icosians q and σq form the root system of E_{8}. Moroever, with the same definition of 'reduced' scalar product they construct the Leech lattice [7] with icosians.

Following [3] we denote the roots and three eight-dimensional representations of $\mathrm{SO}(8)$ by the sets of integral and half integral quaternions

A_{0}	A_{1}	A_{2}	A_{3}
$24: \pm 1, \pm e_{1}, \pm e_{2}, \pm e_{3}$	$8_{v}: \frac{1}{2}\left(\pm 1 \pm e_{1}\right)$	$8_{c}: \frac{1}{2}\left(\pm 1 \pm e_{2}\right)$	$8_{s}: \frac{1}{2}\left(\pm 1 \pm e_{3}\right)$
$\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right)$	$\frac{1}{2}\left(\pm e_{2} \pm e_{3}\right)$	$\frac{1}{2}\left(\pm e_{3} \pm e_{1}\right)$	$\frac{1}{2}\left(\pm e_{1} \pm e_{2}\right)$.

These are the 48 roots of F_{4}. Here A_{1}, A_{2} and A_{3} denote the short roots, A_{0} represents the long roots of F_{4}. In [8] it has been shown that by 'matching' two system of F_{4} roots one can construct the E_{8} lattice. This method is used in [3] to express the E_{8} lattice in terms of octonions. Here we use the same trick. To obtain 240 roots of E_{8} we multiply the F_{4} roots in (6) by σ and add them to the roots in (6) provided the so-obtained icosians have the 'reduced' norm of unity. In fact the following set of icosians

$$
\begin{align*}
& \left(A_{0}, 0\right) \equiv A_{0} \quad\left(0, A_{0}\right) \equiv \sigma A_{0} \quad\left(A_{1}, A_{2}\right)=A_{1}+\sigma A_{2} \\
& \left(A_{2}, A_{3}\right)=A_{2}+\sigma A_{3} \quad\left(A_{3}, A_{1}\right)=A_{3}+\sigma A_{1} \tag{7}
\end{align*}
$$

not only reproduces the 120 elements in ($1 a$) and (1b), denoted by q, but also yields the additional 120 roots σq of E_{8}. It is clear from the definition of 'reduced' scalar product that the quaternionic units $1, e_{1}, e_{2}, e_{3}$ and $\sigma, \sigma e_{1}, \sigma e_{2}, \sigma e_{3}$ form an orthogonal set of eight elements. A Coxeter-Dynkin diagram leading to the E_{8} roots in (7) are given in figure 1. In [3] we have given the octonionic roots of E_{8} with the notation

$$
\begin{align*}
& {\left[A_{0}, 0\right] \equiv A_{0} \quad\left[0, A_{0}\right] \equiv e_{7} A_{0} \quad\left[A_{1}, A_{1}\right] \equiv A_{1}+e_{7} A_{1}} \\
& {\left[A_{2}, A_{3}\right] \equiv A_{2}+e_{7} A_{3} \quad\left[A_{3}, A_{2}\right] \equiv A_{3}+e_{7} A_{2}} \tag{8}
\end{align*}
$$

Figure 1. Coexter-Dynkin diagram of E_{8} with icosians.

A comparison of (7) and (8) suggests that a mapping between the octonionic roots and the icosians can be obtained in the following form:

$$
\begin{array}{lll}
\sigma A_{2} \leftrightarrow e_{7} A_{1} \\
\sigma A_{1} \leftrightarrow e_{7} A_{2} & \rightarrow & \sigma e_{3} \leftrightarrow e_{6}=e_{7} e_{3} \\
\sigma A_{3} \leftrightarrow e_{7} A_{3} & & \sigma e_{1} \leftrightarrow e_{5}=e_{7} e_{2} \tag{9}\\
& \sigma e_{2} \mapsto e_{4}=e_{7} e_{1} .
\end{array}
$$

With the obvious mapping $1 \leftrightarrow 1, e_{1} \leftrightarrow e_{1}, e_{2} \leftrightarrow e_{2}, e_{3} \leftrightarrow e_{3}$ one can easily transform one construction to the other. The correspondence in (9) will also lead to the octonionic construction of the Leech lattice described by Wilson in (5). In appendix 1 of [3] we have shown that two more independent octonionic root systems of E_{8} can be obtained by successive applications of the replacement $A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow A_{1}$ in (8). These changes will certainly alter the mappings in (9) accordingly.

The algebraic structures of the root systems of E_{8} with octonions and icosians can be confronted as follows.
(i) The octonionic root system obeys the usual scalar product defined by (5) and forms a closed non-associative algebra of 240 elements, only 24 of which form a group called the binary tetrahedral group.
(ii) 120 elements of icosians in (7) form the binary icosahedral group extending the order of the group structure in the case of octonions, but the whole set of 240 icosians do not close under multiplication since $(\sigma q)\left(\sigma q^{\prime}\right)=q+\sigma q^{\prime}$ produces the lattice vectors of higher norm.
(iii) As we have shown in [9] octonionic roots of E_{8} yield natural Abelian symmetries Z_{6}, Z_{4}, Z_{3} and Z_{2} of the E_{8} lattice and an interesting manifestation of the triality of the extended Coxeter-Dynkin diagram of E_{6}.

With icosianic roots, while preserving the triality structure of the extended CoxeterDynkin diagram of E_{6} one can naturally have the Abelian symmetries $\mathrm{Z}_{10}, \mathrm{Z}_{6}, \mathrm{Z}_{5}, \mathrm{Z}_{4}$, Z_{3}, Z_{2} of the root system of E_{8}. To be more specific the maximal subgroup $\mathrm{SU}(5) \times$ $\mathrm{SU}(5)$ of E_{8} can be embedded in E_{8} with a Z_{5} symmetry invariance a case, which is not possible in the octonionic representation of E_{8} lattice.

Another amusing observation is the possibility of describing the $E_{8} \times E_{8}^{\prime}$ root system by a simple extension of the root system in (7). Indeed, if we multiply the icosians in (7) by e_{7} we obtain a root system of 240 elements described by the octonionic units $e_{4}, e_{5}, e_{6}, e_{7}$ and $\sigma e_{4}, \sigma e_{5}, \sigma e_{6}$ and σe_{7}. This second set of 240 octonionic elements can be used to describe the root lattice of an independent E_{8}^{\prime}. Its algebraic structure is also interesting. The product of any two roots from E_{8}^{\prime} will give a root or a vector of higher norm in E_{8}. A more important aspect is that the roots of E_{8}^{\prime} are non-associative under multiplication. This feature of E_{8}^{\prime} could be attributed to the reason why E_{8}^{\prime} is not broken in the heterotic string [2] by compactification. The reason could be algebraic rather than dynamical.

Details of this work, emphasising more on the Z_{s} symmetry of the icosians will be published elsewhere [10].

Acknowledgments

I am grateful to Professor Louis Michel for stimulating discussions and for bringing out to my attention the book by Conway and Sloane in [5]. I would like to thank

Professor M Berger for hospitality at IHES. This work was partially supported by the Scientific and Technical Research Council of Turkey.

References

[1] Dixon L, Harvey J, Vafa C and Witten E 1985 Nucl. Phys. B 261 651; 1986 Nucl. Phys. B 274285
[2] Gross D J, Harvey J, Martinec E and Rohm R 1985 Phys. Rev. Lett. 54 502; 1985 Nucl. Phys. B 256 253; 1986 Nucl. Phys. B 26775
[3] Koca M and Ozdes N 1989 J. Phys. A: Math. Gen. 221469
[4] Coxeter H S M 1946 Duke Math. J. 13561
Dickson L E 1919 Ann. Math. 220155
Gursey F 1987 Mod. Phys. Lett. A 2967
Koca M 1986 Integral octonions and E8 Preprint ICTP IC/86/224
[5] Coxeter H S M 1974 Regular Complex Polytopes (Cambridge: Cambridge University Press)
Tits J 1980 J. Algebra 6356
Wilson R A 1986 Geometria Dedicata 20157
Conway J H and Sloane N J A 1987 Sphere-packing, Lattices and Groups (Berlin: Springer) ch 8
[6] Hurtwitz A 1933 Math. Werke 2303
[7] Leech J 1967 Can. J. Math. 19251
[8] Goddard P, Nahm W, Olive D I, Ruegg H and Schwimmer A 1986 Commun. Math. Phys. 107 179; 1987 Commun. Math. Phys. 112385
[9] Gursey F and Koca M 1989 Octonionic Triality of Extended Coxeter-Dynkin Diagram of E_{6}, in preparation
[10] Koca M 1989 J. Phys. A: Math. Gen. 22 in press

